2022/23 ELbM Project Topics

Partner	Masters	PhD	Contact person
Institution			
BIUST	(i) Corrosion resistance and high temperature oxidation response of super-alloy composites	N/A	Prof. E. O. Olakanmi olakanmie@biust.ac.bw
	(ii) Development of new anti-wear materials for mitigating degradation of mining equipment		
	(i) Cracking behaviour and control in laser processed Ni-base super-alloys for high temperature applications	N/A	Dr. P Raghupatruni raghupatrunip@biust.ac.bw
	(ii) Effect of surface modification on corrosion behaviour of laser processed steels		
	(iii) Fabrication of corrosion test-rig for additively manufacture materials		

FUPRE	(i) Laser fabrication of	(i) Laser Fabricated Functionally	Dr. O. Otanocha
	functionally graded	Graded Membrane Electrode	
	aluminum-silicon composites	Assembly for Fuel Cells.	otanocha.omonigho@fupre.edu.ng
	(ii) Selective laser melting of	(ii) Laser Surface Patterning of	
	hazardous inorganic and	Fuel Cell Membrane Electrode	
	organic waste composite.	Assembly for Improved Performance.	
	(iii) Selective laser desorption		
	of heavy metals in hazardous	(iii) Laser Micro-structural	
	waste composite.	Cleaning of Fuel Cell Membrane Electrode Assemblies.	
	(iv) Decontamination of heavy		
	metals from incinerator ash		
	using selective laser melting.		
JKUAT	i) Optimization of laser metal	•	Dr. N. Rehema
	deposition process of a	Optimization and	
	novel refractory	Thermo-mechanical Property	<u>reheman@eng.jkuat.ac.ke</u>
	high-entropy alloy for high	Evaluation in SLMed	
	temperature applications	Bio-compatible Metal Materials	
	ii) In-process monitoring of	for Use in Medical	
	laser additive	Applications.	
	manufacturing for	ii) In-situ Process Parameter	
	aluminium-based alloys	Monitoring and Control During	
	iii) Parametric optimization for	SLM of 18Ni (300-grade)	
	laser welding of refractory	Maraging steels	
	high-entropy alloys	iii) Manufacture and laser beam	
	iv) Process evaluation and	welding of low density	
	optimization of development	refractory high entropy alloys	

	v) FEM stru joini	ctural analysis of laser ing of bulk and additive aufactured titanium	(RHEAs) for aerospace industry. iv) Development and Performance Evaluation of a Wire Arc Additive Manufacturing Rig for Custom-made Spare Parts.	
SU	i) ii)	Development of additive manufactured self-lubricating ball beraings for AGV for warehouses Design and development of Ti-xMo-yFe lattice structures for biomedical applications using laser powder bed fusion. Effect of iron (Fe) content on the properties of Ti-xMo alloys for biomedical applications using laser powder bed fusion.	N/A	Prof Natasha Sacks natashasacks@sun.ac.za

iv)	Investigating the	
	mechanical properties	
	of cermet materials	
	produced using laser	
	powder bed fusion.	
v)	The effect of carbide	
	content on the	
	mechanical properties	
	of carbide-based	
	metal matrix	
	composites produced	
	using laser powder	
	bed fusion.	